2 resultados para visual field

em Glasgow Theses Service


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pseudoneglect represents the tendency for healthy individuals to show a slight but consistent bias in favour of stimuli appearing in the left visual field. The bias is often measured using variants of the line bisection task. An accurate model of the functional architecture of the visuospatial attention system must account for this widely observed phenomenon, as well as for modulation of the direction and magnitude of the bias within individuals by a variety of factors relating to the state of the participant and/or stimulus characteristics. To date, the neural correlates of pseudoneglect remain relatively unmapped. In the current thesis, I employed a combination of psychophysical measurements, electroencephalography (EEG) recording and transcranial direct current stimulation (tDCS) in an attempt to probe the neural generator(s) of pseudoneglect. In particular, I wished to utilise and investigate some of the factors known to modulate the bias (including age, time-on-task and the length of the to-be-bisected line) in order to identify neural processes and activity that are necessary and sufficient for the lateralized bias to arise. Across four experiments utilising a computerized version of a perceptual line bisection task, pseudoneglect was consistently observed at baseline in healthy young participants. However, decreased line length (experiments 1, 2 and 3), time-on-task (experiment 1) and healthy aging (experiment 3) were all found to modulate the bias. Specifically, all three modulations induced a rightward shift in subjective midpoint estimation. Additionally, the line length and time-on-task effects (experiment 1) and the line length and aging effects (experiment 3) were found to have additive relationships. In experiment 2, EEG measurements revealed the line length effect to be reflected in neural activity 100 – 200ms post-stimulus onset over source estimated posterior regions of the right hemisphere (RH: temporo-parietal junction (TPJ)). Long lines induced a hemispheric asymmetry in processing (in favour of the RH) during this period that was absent in short lines. In experiment 4, bi-parietal tDCS (Left Anodal/Right Cathodal) induced a polarity-specific rightward shift in bias, highlighting the crucial role played by parietal cortex in the genesis of pseudoneglect. The opposite polarity (Left Cathodal/Right Anodal) did not induce a change in bias. The combined results from the four experiments of the current thesis provide converging evidence as to the crucial role played by the RH in the genesis of pseudoneglect and in the processing of visual input more generally. The reduction in pseudoneglect with decreased line length, increased time-on-task and healthy aging may be explained by a reduction in RH function, and hence contribution to task processing, induced by each of these modulations. I discuss how behavioural and neuroimaging studies of pseudoneglect (and its various modulators) can provide empirical data upon which accurate formal models of visuospatial attention networks may be based and further tested.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Healthy young adults demonstrate a group-level, systematic preference for stimuli presented in the left side of space relative to the right (‘pseudoneglect’) (Bowers & Heilman, 1980). This results in an overestimation of features such as size, brightness, numerosity and spatial frequency in the left hemispace, probably as a result of right cerebral hemisphere dominance for visuospatial attention. This spatial attention asymmetry is reduced in the healthy older population, and can be shifted entirely into right hemispace under certain conditions. Although this rightward shift has been consistently documented in behavioural experiments, there is very little neuroimaging evidence to explain this effect at a neuroanatomical level. In this thesis, I used behavioural methodology and electroencephalography (EEG) to map spatial attention asymmetries in young and older adults. I then use transcranial direct current stimulation (tDCS) to modulate these spatial biases, with the aim of assessing age-related differences in response to tDCS. In the first of three experiments presented in this thesis, I report in Chapter Two that five different spatial attention tasks provide consistent intra-task measures of spatial bias in young adults across two testing days. There were, however, no inter-task correlations between the five tasks, indicating that pseudoneglect is at least partially driven by task-dependent patterns of neural activity. In Chapter Three, anodal tDCS was applied separately to the left (P5) and right (P6) posterior parietal cortex (PPC) in young and older adults, with an aim to improve the detection of stimuli appearing in the contralateral visual field. There were no age differences in response to tDCS, but there were significant differences depending on baseline performance. Relative to a sham tDCS protocol, tDCS applied to the right PPC resulted in maintained visual detection across both visual fields in adults who were good at the task at baseline. In contrast, left PPC tDCS resulted in reduced detection sensitivity across both visual fields in poor performers. Finally, in Chapter Four, I report a right-hemisphere lateralisation of EEG activity in young adults that was present for long (but not short) landmark task lines. In contrast, older adults demonstrated no lateralised activity for either line length, thus providing novel evidence of an age-related reduction of hemispheric asymmetry in older adults. The results of this thesis provide evidence of a highly complex set of factors that underlie spatial attention asymmetries in healthy young and older adults.